Veri Tabanlarında Bilgi Keşfine Formel Bir Yaklaşım Kısım I: Eşleştirme Sorguları ve Algoritmalar
DOI:
https://doi.org/10.15612/BD.2002.517Anahtar Kelimeler:
Biçimsel kavram analizi, Eşleştirme sorguları, Bağımlılık ilişkileri, Kavram yapılarıÖzet
Son yirmi yıldır veri toplama ve saklama kapasitesinde çok ani büyümeye şahit olmaktayız. Öyleki, bir bilgisayarın işleyebileceği veriden daha fazlası üretilmektedir. Gerçekte bu durum, dünyadaki bilgi miktarının her 20 ayda bir ikiye katlandığı varsayımı ile uygunluk arz etmektedir. Veri biriktirilmesi ile eş zamanlı olarak onu yorumlamadaki ve özümsemedeki insanoğlunun yetersizliği, özdevimli ve akıllı veri tabanı analizi için, yeni nesil araçlarına ve tekniklerine olan ihtiyacı doğurdu. Sonuç olarak, büyük hacimli veri tabanlarından değerli, ilginç ve önceden bilinmeyen bilgiyi keşfetme (veya çıkarma) problemi ile eşleştirilen pratik uygulamalar ve olası çözümlerin kuramsal zorlukları nedeni ile, veri tabanlarında bilgi keşfi (VTBK) önemli ve aktif bir araştırma alanına evrimleşti. Veri tabanı sistemleri, makine öğrenimi, akıllı bilgi sistemleri, istatistik ve uzman sistemler gibi birbirleri ile yakından ilişkili alanlarca VTBK’nın birçok yönü incelendi. Çalışmamızın ilk kısmında (Kısım I), VTBK’ya süreç esaslı bakış açısı getireceğiz ve onun temel sorunlarını adresleyeceğiz. Açık olarak, VTBK disiplinine taban oluşturan gerçek-hayat verilerinin karakteristik özellikleri verilecek ve takiben veri madenciliği ve özelinde eşleştirme sorguları işlenecektir. Eşleştirme sorgularına getirilen tipik bir çözüm açıklanacak ve etkinlik ölçütleri değerlendirilecektir. Bu makalenin devamı olarak yayınlanacak olan ikinci kısımda ise (Kısım II), biçimsel kavram analizi aracılığı ile eşleştirme kuralları modellenmesine özgün yaklaşımımız sunulacaktır.
İndirmeler
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Bu çalışma Creative Commons Attribution 4.0 International License ile lisanslanmıştır.